Abstract

Bone marrow-derived endothelial progenitor cells (EPC) are released into the peripheral blood in situations of vascular repair/angiogenesis. Regulation of vascular repair and angiogenesis by EPC depends not only on the number of circulating EPC but also on their functionality. As endothelial cells can act as antigen-presenting cells in coronary artery disease (CAD), we postulated that EPC can be immune activated here as well. CD34+-EPC were isolated from peripheral blood of patients with ST-elevation myocardial infarction (STEMI, n = 12), non-STEMI/unstable angina (UA, n = 15), and stable CAD (SA, n = 18). Expression of HLA-DR, adhesion and costimulatory molecules by isolated CD34+-EPC were compared with levels in healthy controls (n = 18). There were no significant differences in VCAM-1 and CD80 expression by peripheral circulating CD34+-EPC between the four groups, yet expression of CD86 was highest in UA (p < 0.05). ICAM-1 expression was lowest in SA (p < 0.01). CD34+-EPC constitutively expressed HLA-DR across all groups. Of note, patients pretreated with HMG-CoA reductase inhibitors exhibited lower expression of VCAM-1 by CD34+-EPC throughout all patient groups; furthermore, statins significantly limited ex vivo-induced upregulation of ICAM-1 by TNF-alpha. To the best of our knowledge, this is the first study to examine the expression of immune markers in peripheral circulating CD34+-EPC ex vivo. We demonstrate that CD34+-EPC display different patterns of adhesion and costimulatory molecules in various states of CAD. Expression levels were affected by pretreatment with statins. Hence, immune activity of peripheral circulating CD34+ cells might play a pathophysiologic role in evolution of CAD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call