Abstract

BackgroundPancreatic cancer is a lethal disease due to the high incidence of metastasis at the time of detection. CD133 expression in clinical pancreatic cancer correlates with poor prognosis and metastasis. However, the molecular mechanism of CD133-regulated metastasis remains unclear. In recent years, epithelial-mesenchymal transition (EMT) has been linked to cancer invasion and metastasis. In the present study we investigated the role of CD133 in pancreatic cancer metastasis and its potential regulatory network.MethodsA highly migratory pancreatic cancer cell line, Capan1M9, was established previously. After shRNA was stable transducted to knock down CD133 in Capan1M9 cells, gene expression was profiled by DNA microarray. Orthotopic, splenic and intravenous transplantation mouse models were set up to examine the tumorigenesis and metastatic capabilities of these cells. In further experiments, real-time RT-PCR, Western blot and co-immunoprecipitate were conducted to evaluate the interactions of CD133, Slug, N-cadherin, ERK1/2 and SRC.ResultsWe found that CD133+ human pancreatic cancer cells were prone to generating metastatic nodules in in vivo models using immunodeficient mice. In contrast, CD133 knockdown suppressed cancer invasion and metastasis in vivo. Gene profiling analysis suggested that CD133 modulated mesenchymal characteristics including the expression of EMT-related genes, such as Slug and N-cadherin. These genes were down-regulated following CD133 knockdown. Moreover, CD133 expression could be modulated by the extracellular signal-regulated kinase (ERK)1/2 and SRC signaling pathways. The binding of CD133 to ERK1/2 and SRC acts as an indispensable mediator of N-cadherin expression.ConclusionsThese results demonstrate that CD133 plays a critical role in facilitating the EMT regulatory loop, specifically by upregulating N-cadherin expression, leading to the invasion and metastasis of pancreatic cancer cells. Our study provides a novel insight into the function of CD133 in the EMT program and a better understanding of the mechanism underlying the involvement of CD133 in pancreatic cancer metastasis.

Highlights

  • Pancreatic cancer is a lethal disease due to the high incidence of metastasis at the time of detection

  • CD133 contributes to hematogenous metastasis in vivo In our previous study, we reported that a highly migratory subclone, Capan1M9, derived from the human pancreatic cancer cell line, Capan-1, exhibited a high level of CD133 expression (Additional file 1: Figure S1)

  • It is thought that CD133 contributes to the cancer cell survival in circulation, extravasation, colonization in the distant organ and formation of macro metastasis, which are essential for the process of cancer metastasis

Read more

Summary

Introduction

Pancreatic cancer is a lethal disease due to the high incidence of metastasis at the time of detection. CD133 expression in clinical pancreatic cancer correlates with poor prognosis and metastasis. Epithelial-mesenchymal transition (EMT) has been linked to cancer invasion and metastasis. Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease due to the high occurrence of metastasis at the time of detection [1]. The poor prognosis of patients with PDAC has been attributed to early vascular dissemination and metastasis to distant organs, the liver, lungs, and peritoneum. The primary molecular feature of carcinoma EMT is the upregulation of characteristic mesenchymal genes, including N-cadherin, fibronectin, snail, and snail (Slug). EGF signaling pathways are potent inducers of the EMT program [6], and EGF can activate several pathways through its receptor. The two major intracellular pathways activated by EGFR are the RAS-RAF-MEK-MAPK-ERK pathway and the PI3K-Akt pathway [7]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call