Abstract

Th17 cells express diverse functional programs while retaining their Th17 identity, in some cases exhibiting a stem-cell-like phenotype. Whereas the importance of Th17 cell regulation in autoimmune and infectious diseases is firmly established, the signaling pathways controlling their plasticity are undefined. Using a mouse model of invasive pulmonary aspergillosis, we found that lung CD103(+) dendritic cells (DCs) would produce IL-2, dependent on NFAT signaling, leading to an optimally protective Th17 response. The absence of IL-2 in DCs caused unrestrained production of IL-23 and fatal hyperinflammation, which was characterized by strong Th17 polarization and the emergence of a Th17 stem-cell-like population. Although several cell types may be affected by deficient IL-2 production in DCs, our findings identify the balance between IL-2 and IL-23 productions by lung DCs as an important regulator of the local inflammatory response to infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.