Abstract

The accurate segmentation of prostate region in magnetic resonance imaging (MRI) can provide reliable basis for artificially intelligent diagnosis of prostate cancer. Transformer-based models have been increasingly used in image analysis due to their ability to acquire long-term global contextual features. Although Transformer can provide feature representations of the overall appearance and contour representations at long distance, it does not perform well on small-scale datasets of prostate MRI due to its insensitivity to local variation such as the heterogeneity of the grayscale intensities in the peripheral zone and transition zone across patients; meanwhile, the convolutional neural network (CNN) could retain these local features well. Therefore, a robust prostate segmentation model that can aggregate the characteristics of CNN and Transformer is desired. In this work, a U-shaped network based on the convolution coupled Transformer is proposed for segmentation of peripheral and transition zones in prostate MRI, named the convolution coupled Transformer U-Net (CCT-Unet). The convolutional embedding block is first designed for encoding high-resolution input to retain the edge detail of the image. Then the convolution coupled Transformer block is proposed to enhance the ability of local feature extraction and capture long-term correlation that encompass anatomical information. The feature conversion module is also proposed to alleviate the semantic gap in the process of jumping connection. Extensive experiments have been conducted to compare our CCT-Unet with several state-of-the-art methods on both the ProstateX open dataset and the self-bulit Huashan dataset, and the results have consistently shown the accuracy and robustness of our CCT-Unet in MRI prostate segmentation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call