Abstract

The optical navigation process uses spaceborne measurements of the apparent direction vector from the spacecraft to a target body, (planet, satellite, star, etc.) to improve estimates of the spacecraft trajectory. Ground-based controllers assimilate the optical measurements, together with spacecraft radio-tracking data and target ephemeris data, to generate a best estimate of the trajectory relative to the target. The present paper deals with a development program supporting the use of (solid state) CCD (Charged Coupled Device) imagers for spacecraft navigation. It is shown that stars can be detected that are two to three magnitudes fainter than with an equivalent vidicon based instrument, that effects of global response nonuniformity and dark current spikes can be essentially eliminated from the data as a result of the reproducibility of both effects, and that charge trailing during readout of star image data can lead to position measurement errors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call