Abstract

The reported structures of many CC chemokines show a conserved dimer interface along their N-terminal region, raising the possibility that the quaternary arrangement of these small immune proteins might influence their function. We have produced and analyzed several mutants of MIP-1 beta having a range of dimer K(d) values in order to determine the significance of dimerization in receptor binding and cellular activation. NMR and analytical ultracentrifugation were used to analyze the oligomeric state of the mutants. Functional relevance was determined by receptor binding affinity and the ability to invoke intracellular calcium release from CHO cells transfected with the MIP-1 beta receptor CCR5. The monomeric N-terminally truncated mutant MIP(9) was able to bind the CCR5 receptor with a K(i) of 600 pM but displayed weak agonistic properties, while the monomeric mutant P8A still retained the ability to tightly bind (K(i) = 480 pM) and to activate (EC(50) = 12 nM) the receptor. These data suggest that the MIP-1 beta dimer is not required for CCR5 binding or activation. In addition, we identified Phe13, the residue immediately following the conserved CC motif in MIP-1 beta, as a key determinant for binding to CCR5. Replacement of Phe13 by Tyr, Leu, Lys, and Ala showed the aromatic side chain to be important for both binding to CCR5 and chemokine dimerization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.