Abstract
Diet-induced obesity (DIO) reduces fatty acid oxidation in skeletal muscle and decreases circulating levels of adiponectin. Endocannabinoid signaling is overactive in obesity, with some effects abated by antagonism of cannabinoid receptor 1 (CB1). This research aimed to determine if treatment with the global CB1 antagonist/inverse agonist, AM251, in high-fat diet (HFD) fed rats influenced adiponectin signaling in skeletal muscle and a “browning” of white adipose tissue (WAT) defined by UCP1 expression levels. Male Sprague Dawley rats consumed an HFD (21% fat) for 9 weeks before receiving daily intraperitoneal injections with vehicle or AM251 (3 mg/kg) for 6 weeks. mRNA expression of genes involved in metabolic functions were measured in skeletal muscle and adipose tissue, and blood was harvested for the measurement of hormones and cytokines. Muscle citrate synthase activity was also measured. AM251 treatment decreased fat pad weight (epididymal, peri-renal, brown), and plasma levels of leptin, glucagon, ghrelin, and GLP-1, and increased PAI-1 along with a range of pro-inflammatory and anti-inflammatory cytokines; however, AM251 did not alter plasma adiponectin levels, skeletal muscle citrate synthase activity or mRNA expression of the genes measured in muscle. AM251 treatment had no effect on white fat UCP1 expression levels. AM251 decreased fat pad mass, altered plasma hormone levels, but did not induce browning of WAT defined by UCP1 mRNA levels or alter gene expression in muscle treated acutely with adiponectin, demonstrating the complexity of the endocannabinoid system and metabolism. The CB1 ligand AM251 increased systemic inflammation suggesting limitations on its use in metabolic disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.