Abstract

We have made a quantitative study of quantum electrodynamic corrections to the energy of some simple atoms near a metallic surface. (i) The two-level atom provides a basic framework within which we discuss the van der Waals, Casimir, and resonant radiative level shifts. In this discussion we show that the level shifts of an excited atom are substantially different from those of a classical dipole antenna. (ii) We calculate the possible cavity QED corrections to the n=2 and n=1 hydrogen Lamb-shift measurements and obtain results that disagree with the published literature. (iii) We find a general expression for the shifts of the lowest S and P levels of alkali-metal atoms near a conducting surface. These might be studied in the laboratory as a test of cavity QED.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.