Abstract
An in situ approach to the formation of cavities in liquid Sn droplets for the purpose of increasing ion density from Sn plasma produced by a CO2 laser is investigated. Two-dimensional hydrodynamic simulations, treating the laser as a pulsed pressure source, are compared both spatially and temporally to experimental shadowgraphs for verification of cavity formation. It is shown that a 15 ns pulse from a 1.064 μm laser with intensity of 2 × 1010 W/cm2 creates a cavity approximately 300 μm wide and 100 μm deep in approximately 1.4 μs. The presence of the cavity enhances the conversion of laser energy to 13.5 nm radiation from the plasma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.