Abstract

Enhancing light–matter interactions on a chip is of paramount importance for classical and quantum photonics, sensing, and energy harvesting applications. Several photonic geometries have been developed, allowing high extraction efficiencies, enhanced light–matter interactions, and control over the spontaneous emission dynamics of solid-state quantum light sources. To this end, a device geometry resilient to nanofabrication imperfections, providing high-quality light confinement and control over the emitted light properties, would be desirable. We demonstrate that aperiodic arrangements, whose geometry is inspired by natural systems where scattering elements are arranged following Fibonacci series, represent a platform for enhancing the light–matter interaction in on-chip nanophotonic devices, allowing us to achieve efficient visible light confinement. We use optically active defect centers in silicon nitride as internal light sources to image and characterize, by means of microphotoluminescence spectroscopy, the individual optical modes confined by photonic membranes with Vogel-spiral geometry. By studying the statistics of the measured optical resonances, in combination with rigorous multiple scattering theory, we observe lognormal distributions and report quality factors with values as high as 2201 ± 443. Our findings improve the understanding of the fundamental physical properties of light-emitting Vogel-spiral systems and show their application to active nanophotonic devices. These results set the basis for further development of quantum devices that leverage the unique properties of aperiodic Vogel spiral order on a chip, including angular momentum states, thus producing mode structures for information processing and communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.