Abstract
The “negative squeeze” lubrication problem is investigated by means of a mass-conservating finite element cavitation algorithm (described elsewhere) within the context of a dimensionless study of lubricant film behavior between rigid, parallel separating surfaces. Appropriate mesh geometries which capture spatial and temporal mixture density history and satisfy JFO conditions on the cavitation interface are determined. Present simulation results agree qualitatively with previous experiments, supporting the validity of the algorithm and its utility in the bearing design process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.