Abstract

A heavy sphere is free to move inside a rotating horizontal cylinder filled with viscous liquid. The steady motion is essentially Stokesian, and the sphere rotates at a fixed location with a lubrication layer between the ball and the wall. The symmetry of the flow field suggests there will be no force to balance the normal component of the ball's weight. However, we show that a normal force can arise when a cavitation bubble is present. The bubble size was measured as a function of the cylinder rotation rate and agrees well with a model which uses the force and torque balances on the sphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.