Abstract

In order to investigate the cavitation erosion (CE) resistance of high-alloyed ferrous hardfacings, the three different deposits were pad welded by the shielded metal arc welding (SMAW) method. Consumable electrodes differed in the content of carbide-forming elements, and pad welds were deposited onto the S235JR structural. The CE tests, conducted according to ASTM G32 standard, indicated that hardfacings reveal lower mass loss than the reference stainless steel AISI 304 (X5CrNi18-10). The hardfacings show increasing resistance to CE in the following order: Cr-C < Cr-C-Mo < Cr-C-Mo-V-W. The reference steel revealed more than twenty times higher material loss in the CE test than Cr-C-Mo-V-W hardfacing, which had outstanding hardness (825HV0.3). The profilometric measurements and scanning electron microscopy investigations showed large changes in valley and peak sizes of the roughness profiles for materials which displayed high erosion rates. The erosion mechanism of the coatings can be classified as brittle-ductile and relies on cracking, chunk removal of material, pits and craters formation, and deformation of fractured material tips and edges. Hardfacing materials failed primarily due to brittle fractures with different severities. Specimen surface degradation follows the changes in Ra, Rz, Rv, and Rp roughness parameters and well-corresponds to the proposed roughness rate (RR) parameter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call