Abstract
A computational procedure for the mechanism of shear between the liquid sublayer and air cavity in the cavitation zone of a submerged journal bearing is presented here. Using the mass conservation principle, Elrod’s universal equation is modified to take into consideration the shear of the air cavity in the cavitation region. Results of steady state and transient response for the submerged journal bearing using the present approach are compared with the universal equation based on the striated flow in the cavitation region. At steady state, the angular extent of cavitation region predicted by the present approach is higher than that predicted by Elrod’s model and the limit cycle journal transient response using the present approach predicts higher eccentricity ratios.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.