Abstract

Recently, it has been shown for mouse skeletal muscle that caveolin-3 is localized in the sarcolemma and cofractionates with the original dystrophin complex (DC). In order to find out whether caveolin-3 is a further component of the recently established and enlarged nitric oxide synthase (NOS) I-DC and whether members of this complex interact with and are potentially regulated by caveolin-3, mammalian and non-mammalian healthy and diseased (dystrophic) skeletal muscles were investigated using caveolin-3, NOS I, DC components and myosin immunohistochemistry as well as NOS I-associated diaphorase histochemistry. In healthy mammalian skeletal muscle, caveolin-3 was colocalized with the DC components in all extra- and intrafusal fibers. By contrast, NOS I was absent in type I extrafusal fibers of certain species. In patients with Duchenne muscular dystrophy and mdx mice the components of the NOS I-DC were not detected in all extra- and intrafusal fiber types, while caveolin-3 was found unchanged. In healthy non-mammalian skeletal muscle, i.e. of birds, reptiles and fishes, caveolin-3 immunoreactivity was lacking in the sarcolemma as was alpha-sarcoglycan; the other NOS I-DC components were either present or absent. In conclusion, although caveolin-3 is localized in the sarcolemma of mammalian myofibers, there are differences in the microarchitecture of the components of the DC complex and of caveolin-3 which does not appear to be linked with the NOS I-DC. Potential regulatory interactions between caveolin-3 and NOS I may nevertheless exist in those fibers where both molecules are colocalized. The absence of caveolin-3 and alpha-sarcoglycan immunoreactivities in non-mammalian myofibers may suggest that the functions of these proteins are subserved by other components of NOS I-DC complex.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call