Abstract

The key glycolytic enzyme phosphofructokinase (PFK) is responsible for maintaining glycolytic stability and an important energy source for activating hepatic stellate cells (HSCs). However, its regulation in activated HSCs remains unclear. Caveolin-1 (Cav1), a major constituent of caveolae, has emerged as a key target for triggering glycolysis. However, the relationship between Cav1 and glycolysis during HSC activation is not well established. In this study, Cav1 was upregulated in mouse and human fibrotic liver tissues. We concluded that HSC-specific Cav1 knockdown markedly alleviates liver injury and fibrosis. Mechanistically, Cav1 was elevated during primary mouse HSC activation, competing with SQSTM1 for the regulatory subunit of PFK liver type and inhibiting the SQSTM1-mediated autophagy-independent lysosomal degradation pathway to sustain HSC activation. We also identified the heptapeptide alamandine as a promising therapeutic agent that downregulates Cav1 protein levels via proteasomal degradation and may impair glycolysis. Our study provides evidence of the crucial role and mechanism of Cav1 in the glucose metabolic network in HSCs and highlights Cav1 as a critical therapeutic target for the treatment of liver fibrosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.