Abstract

Back-trap mottle is a common and serious print quality problem in lithographic offset printing of coated papers. It is caused by nonuniform ink retransfer from an already printed surface when it passes through a subsequent printing nip with the print in contact with the rubber blanket in that nip. A nonuniform surface porosity gives rise to mottle. A key parameter in mottling contexts is the coating mass distribution, which must be uniform. Good relationships between mottle and mass distribution have also been reported; the mottle pattern coincides with that of the coating mass distribution. High blade pressures, compressible base papers, and high water pick-up between application and metering, which plasticizes the paper, yield uniform mass distributions, but these parameters might have a detrimental effect on the runnability in blade coating in terms of web breaks. The general opinion has been that nonuniform surface porosity is caused by binder migration and enrichment of binder in the coating surface, more in the high coat weight areas and less in the low coat weight areas. Recent research has suggested that a more probable mechanism is depletion of binder in the coating surface. Nonuniform shrinkage of the pigment matrix (filter cake) formed during the consolidation between the first critical concentration (FCC) and the second critical concentration (SCC) is another possible mechanism. Relevant relaxation times for latex and the time scales for consolidation show that the high coat weight areas shrink more than the low coat weight areas in the coating layer. A recent pilot-scale experiment has shown that the drying strategy did not affect the differences in shrinkage between high and low coat weight areas. The drying strategy has a pronounced impact on mottle. A high evaporation rate at the beginning of the evaporation results in less mottle than a low evaporation rate. The least mottle is obtained if the drying is performed with a gap in the course of evaporation between the FCC and the SCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call