Abstract

A factorial experiment (3 × 4 × 2 × 3) was conducted in programmable incubators to investigate interaction between the effects of rainfall amount, rainfall distribution and evaporation rate on development of Haemonchus contortus to L3. Sheep faeces containing H. contortus eggs were incubated on sterilised soil under variable temperatures typical of summer in the Northern Tablelands of NSW, Australia. Simulated rainfall was applied in 1 of 3 amounts (12, 24 or 32 mm) and 4 distributions (a single event on the day after deposition, or the same total amount split in 2, 3 or 4 equal events over 2, 3 or 4 days, respectively). Samples were incubated at either a Low or High rate of evaporation (Low: 2.1–3.4 mm/day and High: 3.8–6.1 mm/day), and faeces and soil were destructively sampled at 4, 7 and 14 days post-deposition. Recovery of L3 from the soil (extra-pellet L3) increased over time (up to 0.52% at day 14) and with each increment of rainfall (12 mm: <0.01%; 24 mm: 0.10%; 32 mm: 0.45%) but was reduced under the High evaporation rate (0.01%) compared with the Low evaporation rate (0.31%). All rainfall amounts yielded significantly different recoveries of L3 under Low evaporation rates but there was no difference between the 12 and 24 mm treatments under the High evaporation rate. The distribution of simulated rainfall did not significantly affect recovery of infective larvae. Faecal moisture content was positively associated with L3 recovery, as was the ratio of cumulative precipitation and cumulative evaporation (P/E), particularly when measured in the first 4 days post-deposition. The results show that evaporation rate plays a significant role in regulating the influence of rainfall amount on the success of L3 transmission.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call