Abstract

AbstractThe ozonesonde observations in Hanoi, Vietnam, over 14 years since 2004, have confirmed an enhancement in lower tropospheric ozone concentration at about 3 km altitude in the spring season. We investigated the evolution of the ozone enhancement from analysis of meteorological data, backward trajectories, and model sensitivity experiments. In spring, air masses over Hanoi exhibit strong height dependence. At 3 km, the high‐ozone air masses originate from the land area to the west of Hanoi, while low‐ozone air masses below about 1.5 km are from the oceanic area to the east. Above 4 km, the air masses are mostly traced back to the farther west area. The chemical transport model simulations revealed that precursor emissions from biomass burning in the inland Indochina Peninsula have the largest contribution to the lower tropospheric ozone enhancement, which is transported upward and eastward and overhangs the clean air intrusion from the ocean to the east of Hanoi. At this height level, the polluted air has the horizontal extent of about 20° in longitude and latitude. The polluted air observed in Hanoi is transported further east and widely spread over the northern Pacific Ocean.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.