Abstract
Alzheimer's disease, a common and progressive neurodegenerative disorder, is associated with alterations in hippocampal volume, as revealed by neuroimaging research. However, the causal links between the volumes of the hippocampus and its subfield structures with Alzheimer's disease remain unknown. A genetic correlation analysis using linkage disequilibrium score regression was conducted to identify hippocampal volumetric traits linked to Alzheimer's disease. Following this, to examine the causal links between Alzheimer's disease and hippocampal volumetric traits, we applied a two-sample Mendelian randomization approach, utilizing a bidirectional framework. Seven hippocampal volumetric traits were found as genetically correlated with Alzheimer's disease in the genetic correlation analysis and were then included in the Mendelian randomization analyses. Inverse variance weighted Mendelian randomization analyses revealed that increased volumes in the left whole hippocampus, left hippocampal body, right presubiculum head and right cornu ammonis 1 head were causally related to higher risks of Alzheimer's disease. Conversely, a higher risk of Alzheimer's disease was causally associated with decreased volumes of the left hippocampal body and left whole hippocampus. These results were validated through other Mendelian randomization approaches and sensitivity analysis. Our findings uncover bidirectional causal relationships between Alzheimer's disease and hippocampal volumetric traits, suggesting not only the potential significance of these traits in predicting Alzheimer's disease but also the reciprocal influence of Alzheimer's disease on hippocampal volumes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have