Abstract

BackgroundStatistical correlation analysis is currently the most typically used approach for investigating the risk factors of type 2 diabetes mellitus (T2DM). However, this approach does not readily reveal the causal relationships between risk factors and rarely describes the causal relationships visually.ResultsConsidering the superiority of reinforcement learning in prediction, a causal discovery approach with reinforcement learning for T2DM risk factors is proposed herein. First, a reinforcement learning model is constructed for T2DM risk factors. Second, the process involved in the causal discovery method for T2DM risk factors is detailed. Finally, several experiments are designed based on diabetes datasets and used to verify the proposed approach.ConclusionsThe experimental results show that the proposed approach improves the accuracy of causality mining between T2DM risk factors and provides new evidence to researchers engaged in T2DM prevention and treatment research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.