Abstract

Temporallobe epilepsy (TLE) has been conceptualized as a brain network disease, which generates brain connectivity dynamics within and beyond the temporal lobe structures in seizures. The hippocampus is a representative epileptogenic focus in TLE. Understanding the causal connectivity in terms of brain network during seizures is crucial in revealing the triggering mechanism of epileptic seizures originating from the hippocampus (HPC) spread to the lateral temporal cortex (LTC) by ictal electrocorticogram (ECoG), particularly in high-frequency oscillations (HFOs) bands. In this study, we proposed the unified-epoch dynamic causality analysis method to investigate the causal influence dynamics between two brain regions (HPC and LTC) at interictal and ictal phases in the frequency range of 1-500 Hz by introducing the phase transfer entropy (PTE) out/in-ratio and sliding window. We also proposed PTE-based machine learning algorithms to identify epileptogenic zone (EZ). Nine patients with a total of 26 seizures were included in this study. We hypothesized that: 1) HPC is the focus with the stronger causal connectivity than that in LTC in the ictal state at gamma and HFOs bands. 2) Causal connectivity in the ictal phase shows significant changes compared to that in the interictal phase. 3) The PTE out/in-ratio in the HFOs band can identify the EZ with the best prediction performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call