Abstract
As the Chain Event Graph (CEG) has a topology which represents sets of conditional independence statements, it becomes especially useful when problems lie naturally in a discrete asymmetric non-product space domain, or when much context-specific information is present. In this paper we show that it can also be a powerful representational tool for a wide variety of causal hypotheses in such domains. Furthermore, we demonstrate that, as with Causal Bayesian Networks (CBNs), the identifiability of the effects of causal manipulations when observations of the system are incomplete can be verified simply by reference to the topology of the CEG. We close the paper with a proof of a Back Door Theorem for CEGs, analogous to Pearl's Back Door Theorem for CBNs.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have