Abstract
<p style='text-indent:20px;'>We consider a Cauchy problem for a fractional anisotropic parabolic equation in anisotropic Hölder spaces. The equation generalizes the heat equation to the case of fractional power of the Laplace operator and the power of this operator can be different with respect to different groups of space variables. The time derivative can be either fractional Caputo - Jrbashyan derivative or usual derivative. Under some necessary conditions on the order of the time derivative we show that the operator of the whole problem is an isomorphism of appropriate anisotropic Hölder spaces. Under some another conditions we prove unique solvability of the Cauchy problem in the same spaces.</p>
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have