Abstract

In consideration of environmental aspects and limited availability of resources, the focus of automotive and aerospace industry lies on significant weight optimisations especially for moving loads. In this context, innovative lightweight materials as well as material combinations need to be developed. A considerable potential for lightweight structures can be found in fibre- or textile-reinforced semi-finished products. Due to their specific characteristics and extraordinary structural diversity, thermoset and thermoplastic matrix systems can be used. In particular, carbon fibres as reinforcing components combined with a thermoplastic matrix polymer are able to create new high-performance applications. Besides the significant lightweight characteristics of the fibre-plastic-composites, in some instances contrary requirements must be satisfied in many areas, such as strength and ductility. In this field, the combination of fibre-reinforced polymers with aluminium or titanium sheets creates unique composite materials, so called hybrid laminates, which fulfil the unusual expectations.The focus of the current study lies on the development of a new thermoplastic hybrid laminate named CATPUAL (CArbon fibre-reinforced Thermoplastic PolyUrethane/ALuminium laminate). The structure of the laminate is an alternating sequence of thin aluminium sheets (EN AW 6082-T4) and fibre-reinforced thermoplastic polyurethane (TPU). The individual layers are consolidated to each other by using a hot pressing process. First results showed that the impregnation capability of thermoplastic polyurethane surpasses any other commercially available hybrid laminates. Furthermore, the mechanical properties regarding bending strength and interlaminar shear strength are exceeding the state of the art drastically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call