Abstract

In this work, a two-dimensional heterostructure of molybdenum disulfide (MoS2) and nickelhydroxyloxide (NiOOH) nanosheets supported on catkin-derived mesoporous carbon (C-MC) was constructed and exploited as an efficient electrocatalyst for overall water splitting. The C-MC nanostructure was prepared by pyrolyzing biomass material of catkin at 600 °C in N2 atmosphere. The C-MC network exhibited hollow nanotube structure and had a large specific surface area, comprising trace nitrogen and a large amount of oxygen vacancies. It further served as the support for the growth of NiOOH nanosheets (NiOOH@C-MC), which was combined with MoS2 nanosheets by in situ growth, yielding a multicomponent electrocatalyst (MoS2@NiOOH@C-MC). By integrating the superior hydrogen evolution reaction (HER) performance of MoS2, oxygen evolution reaction (OER) performance of NiOOH, and the fast electron transfer capability of C-MC, the prepared MoS2@NiOOH@C-MC illustrated a low potential of − 250 mV for HER and 1.51 V for OER at the current density of 10 mV cm−2. Consequently, when applied as the working electrode for driving overall water splitting in a two-electrode system, the bifunctional MoS2@NiOOH@C-MC electrocatalyst displayed a low cell voltage of 1.62 V at the current density of 10 mA cm−2. The present work provides a new strategy that uses biomass material for developing bifunctional electrocatalyst for overall water splitting.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call