Abstract

Development of efficient adsorbents to inorganic anions as a solid phase extraction (SPE) material is highly desirable for chromatographic analysis and pollution control. In this work we developed a new hybrid cationic microcrystalline cellulose aerogel composite. Cationic cetylpyridinium imbedded montmorillonite (CPC-MT) was uniformly entrapped in microcrystalline cellulose (MCC) to enhance anionic adsorption efficiency and mechanical stability. The developed CPC-MT@MCC aerogel was used as an SPE adsorbent for anions from dairy wastewater by coupling with ion-column chromatography. Further quaternized CPC-MT@MCC aerogel (CPC-MT@QMCC) showed unique low density (10.6mgcm-3), large specific surface area (320m2g-1), porosity 70%, 800mgg-1 nitrate adsorption capacity within 60min and ease of elution in alkaline solutions. The CPC-MT@QMCC aerogel showed efficient regeneration and reuse performances for up to 10 cycles. More importantly, a dynamic binding efficiency of 710mgg-1 highlights its excellent performance for practical applications. 96% of nitrate anion from environmental manure wastewater samples were adsorbed with 98.7% recovery. A good linear relationship was obtained in the range of 0.01-10mgL-1 and the limits of detection was 0.5mgL-1 using CPC-MT@QMCC aerogel as a preconcentration column. The successful synthesis of such intriguing and economic CPC-MT@QMCC aerogel may provide a promising matrix for high-performance and high efficiency chromatographic media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.