Abstract
The properties of the cation vacancy and the Te antisite, two dominant defects in CdTe and Cd1-xZnxTe alloys grown in Te-rich conditions, are examined using first-principles calculations. First, the structure, electronic levels, and migration paths of V-Cd and Te-Cd in CdTe are studied in detail. Additionally, we analyze the evolution of the stability and electronic properties in Cd1-xZnxTe alloys, taking into account both the role of alloying in the position of the ionization levels and its effects on the equilibrium concentration of those two defects. It is shown that the formation of cation vacancies becomes progressively more favorable as x increases, whereas Te antisites become less stable, backing the trend towards p-type conductivity in dilute Cd1-xZnxTe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.