Abstract

We examined the electrosorption and ion dynamics of imidazolium-based room temperature ionic liquids (RTILs) having short (3-carbon, C3mim+) and long (12-carbon, C12mim+) cations, that is, 1-propyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C3mimTFSI) and 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C12mimTFSI), confined in ordered mesoporous carbon (OMC) and analyzed the influence of the cation alkyl chain length on the ion dynamics and the capacitive behavior using electrochemical measurements together with quasi-elastic neutron scattering (QENS) observations and classical density functional theory (cDFT) computations. Electrochemical tests highlighted the significant influence of specific applied potentials on accumulated charge storage densities and on the limits of saturation of larger electrolytes in the pores. Computational analyses corroborated these findings and predicted a 16% increase in the capacitance of the smaller-cation electrolyte under high applied potentials. However, QENS experiments revealed a behavior of decoupling of alkyl chain dynamics from the ring in electrolytes with larger ions. cDFT calculations identified density spikes for C12mim+ away from the pore walls to further corroborate this unique behavior. Our insights into chain length-dependent dynamics and electrosorption in complex electrolyte-electrode systems deepen fundamental understanding of confined RTIL electrolyte behavior in the porous carbon electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.