Abstract
The influence of the length of the cation alkyl chain on the dispersibility by ultrasonic treatment of TiO2 nanopowders in hydrophilic imidazolium-based room temperature ionic liquids was studied for the first time by dynamic light scattering and advanced rheology. TiO2 nanopowders had been synthesized by chemical vapor synthesis (CVS) under varied conditions leading to two different materials. A commercial nanopowder had been used for comparison. Characterizations had been done using transmission electron microscopy, X-ray diffraction, nitrogen adsorption with BET analysis, and FT-IR spectroscopy. Primary particle sizes were about 6 and 8 nm for the CVS-based and 26 nm for the commercial materials. The particle size distribution in the dispersion was strongly influenced by the length of the cation alkyl chain for all the investigated powders with different structural characteristics and concentrations in the dispersion. It was found that an increase of the alkyl chain length was beneficial, leading to a narrowing of the particle size distribution and a decrease of the agglomerate size in dispersion. The smallest average nanoparticle sizes in dispersion were around 30 nm. Additionally, the surface functionality of the nanoparticles, the concentration of the solid material in the liquid, and the period of ultrasonic treatment control the dispersion quality, especially in the case of the ionic liquids with the shorter alkyl chain. The influence of the nanopowders characteristics on their dispersibility decreases considerably with increasing cation alkyl chain length. The results indicate that ionic liquids with adapted structure are candidates as absorber media for nanoparticles synthesized in gas phase processes to obtain liquid dispersions directly without redispergation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.