Abstract

A temperature-controlled cation-exchange approach is introduced to achieve a unique dual-exsolution in perovskite La0.8 Fe0.9 Co0.1 O3-δ where both CoFe alloy and Co metal are simultaneously exsolved from the parent perovskite, forming an alloy and metal co-decorated perovskite oxide. Mossbauer spectra show that cation exchange of Fe atoms in CoFe alloy and Co cations in the perovskite is the key to the co-existence of Co metal and CoFe alloy. The obtained composite exhibits an enhanced catalytic activity as Li-O2 battery cathode catalysts with a specific discharge capacity of 6549.7 mAh g-1 and a cycling performance of 215 cycles without noticeable degradation. Calculations show that the combination of decorated CoFe alloy and Co metal synergistically modulated the discharge reaction pathway that improves the performance of Li-O2 battery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.