Abstract
Alkali aluminophosphate glasses, including those in the system xAl2O3·(1−x)CsPO3 (0 ≤x≤ 0.25), were examined by high‐performance liquid chromatography (HPLC), infrared (IR), and 27Al magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopies. Phosphate anions become progressively shorter with the addition of alumina to a metaphosphate glass. Al3+ ions are initially incorporated into the structure in octahedral sites, but the average Al coordination number (CN) decreases with increasing alumina content and tetrahedral species are the preferred moiety when [O]/[P] > 3.5. Al[4] sites appear to be associated with monophosphate (Q0) anions. The role of modifier size on aluminophosphate structure is investigated. At low alumina content (<15 mol%), the disproportionation of pyrophosphate anions into triphosphate and orthophosphate anions is responsible for the lower average Al CN of cesium aluminophosphate glasses compared with sodium aluminophosphate glasses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.