Abstract

The compound semiconductor Cu2ZnSnS4 (CZTS) is a promising alternative for absorber layers in thin film solar cells, as it has a nearly ideal band gap of about 1.5 eV, a high absorption coefficient for visible light, and contains only earth abundant and non-toxic elements. Besides chemical composition and phase purity, the efficiency of CZTS thin film solar cells depends strongly on the concentration of Cu- and Zn-antisites and copper vacancies in the kesterite-type structure. However, Cu(I) and Zn(II) are isoelectric and thus cannot be distinguished by conventional X-ray diffraction. In prior work we determined Cu-Zn-distribution successfully from neutron scattering [1]. Here we present experiments utilizing anomalous X-ray diffraction on the K-edges of Cu and Zn. Anomalous scattering coefficients are heavily wavelength-dependent close to the absorption edges of the respective element. This is utilized for contrast enhancement. Usage of multiple wavelengths above, below and between the absorption edges of Cu and Zn ensures significant overdetermination, so that the Cu-, Zn-, and vacancy concentrations can be refined reliably for the independent crystallographic sites. Experiments were conducted at the diffraction end station of the KMC-2 beamline [2] at BESSY (Berlin, Germany). KMC-2 provides X-ray radiation with both very stable energies and intensities. The accessible energy range of 4 – 14 keV is ideally suited for the K-edges of Cu (8979 eV) and Zn (9659 eV). A 6-circle goniometer in psi-geometry allows both powder and grazing incidence diffraction, so that bulk samples and thin films can be measured. The instrument can be equipped with either a scintillation point detector (Cyberstar) or an area detector (Bruker Vantec), allowing to optimize resolution and intensity to the needs of the experiment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.