Abstract
Recently, mixed-cation perovskites have promised enhanced performances concerning stability and efficiency in optoelectronic devices. Here, we report a systematic study on the effects of cation alloying on polaronic properties in cation-alloyed perovskites using first principle calculations. We find that cation alloying significantly reduces the polaron binding energies for both electrons and holes compared to pure methylammonium lead iodide (MAPbI3). This is rationalized in terms of crystal symmetry reduction that causes polarons to be more delocalized. Electron polarons undergo large Jahn-Teller distortions (∼15-30%), whereas hole polarons tend to shrink the lattice by ∼5%. Such different lattice distortion footprints could be utilized to distinguish the type of polarons. Finally, our simulations show that Cs, formamidinium (FA), and MA mixtures can effectively minimize polaron binding energy while weakly affecting band gap, in a good agreement with experimental findings. These modeling results can guide future development of halide perovskite materials compositions for optoelectronic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.