Abstract

Cross-sectional cathodoluminescence (CL) measurements were applied to the study of electron-irradiated punch-through insulated gate bipolar transistors (IGBTs) to investigate the relationship between radiative recombination centers and electrical characteristics. IGBTs were additionally annealed at temperatures of 200–400 °C for 1 h. As annealing temperature rose, collector–emitter saturation voltage (VCES) decreased and current fall time (tf) increased. The cross-sectional CL measurements showed sharp luminescent peaks at 1018 meV (W or I1), 1040 meV (X or I3), and 790 meV (C) and a broad band at approximately 0.90–1.05 eV. As annealing temperature rose, the intensity of the W line decreased and that of the X line increased, suggesting that small self-interstitial clusters agglomerate and form stable, large self-interstitial clusters reducing the total number of self-interstitial clusters. The C line, which originated from an interstitial oxygen and carbon complex, showed no significant change. We consider that self-interstitial clusters play important roles in the electrical characteristics of lifetime-controlled IGBTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.