Abstract

Electron microscopy and cathodoluminescence (CL) microanalysis were used for a comparative study of porous layers fabricated by electrochemical etching of n-GaP and n-InP substrates in aqueous solutions of sulfuric and hydrochloric acids. Both the CL and morphology of porous layers were found to depend upon the anodic current density. At high current density (100 mA/cm 2 ) anodization leads to the formation of so-called current-line oriented pores while at low current densities the pores grow along (111) crystallographic directions. The porosity relief was found to give rise to spatial modulation of the CL intensity. The composition microanalysis proved the stoichiometry of porous GaP and InP skeletons, although we found considerable traces of oxygen in porous GaP layers. Self-induced voltage oscillations giving rise to a synchronous modulation of the diameter of pores and CL intensity were evidenced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.