Abstract

Metal(loid)s are used in various industrial activities and widely spread across the environmental settings in various forms and concentrations. Extended releases of metal(loid)s above the regulatory levels cause environmental and health hazards disturbing the ecological balance. Innovative processes for treating the metal(loid)-contaminated sites and recovery of metal(loid)s from disposed waste streams employing biotechnological routes provide a sustainable way forward. Conventional metal recovery technologies demand high energy and/or resource inputs, which are either uneconomic or unsustainable. Microbial electrochemical systems are promising for removal and recovery of metal(loid)s from metal(loid)-laden wastewaters. In this communication, a bioelectrochemical system (BES) was designed and operated with selenium (Se) oxyanion at varied concentrations as terminal electron acceptor (TEA) for reduction of selenite (Se4+) to elemental selenium (Se0) in the abiotic cathode chamber. The influence of varied concentrations of Se4+ towards Se0 recovery at the cathode was also evaluated for its regulatory role on the electrometabolism of anode-respiring bacteria. This study observed 26.4% Se0 recovery (cathode; selenite removal efficiency: 73.6%) along with organic substrate degradation of 74% (anode). With increase in the initial selenite concentration, there was a proportional increase in the dehydrogenase activity. Bioelectrochemical characterization depicted increased anodic electrogenic performance with the influence of varied Se4+ concentrations as TEA and resulted in a maximum power density of 0.034 W/m2. The selenite reduction (cathode) was evaluated through spectroscopic, compositional and structural analysis. X-ray diffraction and Raman spectroscopy showed the amorphous nature, while Energy Dispersive X-ray spectroscopy confirmed precipitates of the deposited Se0 recovered from the cathode chamber. Scanning electron microscopic images clearly depicted the Se0 depositions (spherical shaped; sized approximately 200 nm in diameter) on the electrode and cathode chamber. This study showed the potential of BES in converting soluble Se4+ to insoluble Se0 at the abiotic cathode for metal recovery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call