Abstract

Microbial fuel cell (MFC) is a sustainable and energy efficient technology, which uses graphite as cathode for hydrogen peroxide (H2O2) production often with simultaneous power production. Nevertheless, slow kinetics of oxygen reduction reaction (ORR) at the surface of graphite often results in poor performance of MFC. In an attempt to improve the performance of MFC for in‐situ H2O2 production, a treatment of graphite cathode using nitric acid was performed. The treatment was conducted in three steps (i) heat treatment at 450°C for 2 h; (ii) acid treatment with concentrated nitric acid for 5 h; and (iii) drying at 120°C for 2 h. After the treatment, four times increase in surface area of treated cathode (GR‐HA) was observed. Energy‐dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FTIR) analysis revealed the presence of nitrogen and quinone based functional groups on the surface of GR‐HA. Cyclic voltammetric (CV) analysis of GR‐HA cathode further confirmed the production of H2O2 at the peak current value of −3.7 mA and on‐set potential of −0.1 V. Following CV analysis, H2O2 production experiments were performed in a dual chamber MFC using GR‐HA as cathode. Maximum 150 mg/L of H2O2 was produced with simultaneous power production of 36.438 mW/m2. Approximately, 25% increase in both H2O2 and power production was observed in the case of G cathode. Subsequently, Fenton oxidation experiments were performed (with GR‐HA and GR‐CA cathodes) to determine the efficacy of in‐situ produced H2O2. This resulted in an increase of 8.28%, 11.04%, and 31.32% in decolorization, chemical oxygen demand (COD), and Total Organic Carbon (TOC) removal efficiency, respectively. © 2016 American Institute of Chemical Engineers Environ Prog, 36: 382–393, 2017

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call