Abstract

To evaluate resonant circuits as markers for magnetic resonance (MR) imaging-guided placement of nitinol stents. The study was approved by the institutional animal research committee and complied with National Institutes of Health guidelines for care and use of laboratory animals. Resonant circuits similar to catheter markers used at conventional angiography were placed proximally and distally to a nitinol stent in a stent delivery system. Resonant circuits were tested in vitro and in vivo for signal intensity levels that would enable visualization during MR imaging-guided stent deployment. Experiments were conducted by using real-time imaging with a 1.5-T unit. Stents (n = 9) were deployed in the vena cava (n = 2), abdominal aorta (n = 2), isthmus of the aorta (n = 2), and carotid (n = 2) and iliac (n = 1) arteries in five pigs. After intervention, the site of the stent was investigated with balanced fast field-echo MR imaging and contrast material-enhanced MR angiography. Blood flow velocities were measured in the stent lumen and next to the stent with velocity-encoded cine MR imaging. Level of agreement was determined with Bland-Altman analysis. During all interventions, resonant circuits provided highly visible MR signal that allowed fast and reliable visualization of the stent delivery system. Borders of loaded stents were clearly marked, which allowed precise stent placement in all experiments. Balanced fast field-echo MR imaging and contrast-enhanced MR angiography provided information about immediate postintervention position. Positions depicted on MR images were found accurate at postmortem examination. Results of Bland-Altman analysis showed good agreement between blood flow velocities measured in and next to the stent lumen, with a mean difference of -9 cm/sec +/- 5 (standard deviation). Resonant circuits are well suited for use at deployment of endovascular stents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.