Abstract

The cryopreservation of mammalian embryos is an important technology in embryo engineering. The discovery and application of the embryo's own high freezing resistance factors are the main methods to improve the utilization of mammalian embryos in cryopreservation. Cathepsin L gene expression in the frozen and thawed dormant embryos displayed a significant difference from those normal hatched ones. The aim of the present study was to dig out the potential role of Cathepsin L in anti-freezing capacity of murine blastocysts by investigating the location and expression of Cathepsin L in frozen and thawed both activated and dormant hatching blastocysts. Different concentrations of Cathepsin L recombinant protein and E-64d were then respectively added into the embryo cryoprotectant and pre-cryo culture medium. Our results found that down-regulation of Cathepsin L improves the freezing resistance of murine normal hatching embryos by reducing apoptosis. Cathepsin L inhibitors can be used to improve the efficiency of cryopreservation and recovery of blastocysts in vitro. Our study provides a theoretical basis for the further development and application of Cathepsin L.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call