Abstract
Wireless networks typically employ some form of forward error correction (FEC) coding and some automatic repeat request (ARQ) protocol to ensure reliable data transmission over lossy channels. We propose to integrate FEC and ARQ in the context of random linear network coding (RLNC). In particular, we develop Caterpillar RLNC with feedback (CRLNC-FB), an RLNC approach with a finite sliding packet transmission window in conjunction with feedback-based selective repeat ARQ. CRLNC-FB employs a novel RLNC decoding method based on a band-form of Gaussian elimination. In response to lost packets, CRLNC-FB retransmits lost packets in systematic (uncoded) form to aid fast in-order packet delivery at the receiver. Extensive performance evaluations indicate that CRLNC-FB gives higher throughput-delay performance than the preceding RLNC approaches with feedback. In particular, CRLNC-FB with its sliding window achieves lower delays than block-based RLNC. Also, the retransmission of uncoded source packets in CRLNC-FB contributes to a significantly higher throughput-delay performance than loss recovery through coded packets interspersed among future source packets at a prescribed code rate.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have