Abstract
The research reported in this paper exploits the view of constraint programming as computation in a logical system, namely constraint logic. The basic ingredients of constraint logic are: constraint models for the semantics (they form a comma-category over a fixed model of ‘built-ins’); generalized polynomials in the role of basic syntactic ingredient; and a constraint satisfaction relation between semantics and syntax. Category-based constraint logic means the development of the logic is abstract categorical rather than concrete set theoretical.We show that (category-based) constraint logic is an institution, and we internalize the study of constraint logic to the abstract framework of category-based equational logic, thus opening the door for considering constraint logic programming over non-standard structures (such as CPO's, topologies, graphs, categories, etc.). By embedding category-based constraint logic into category-based equational logic, we integrate the constraint logic programming paradigm into (category-based) equational logic programming. Results include completeness of constraint logic deduction, a novel Herbrand theorem for constraint logic programming characterizing Herbrand models as initial models in constraint logic, and logical foundations for the modular combination of constraint solvers based on amalgamated sums of Herbrand models in the constraint logic institution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.