Abstract
Decision making is a vital function in the age of machine learning and artificial intelligence; however, its physical realization and theoretical fundamentals are not yet well understood. In our former study, we demonstrated that single photons can be used to make decisions in uncertain, dynamically changing environments. The two-armed bandit problem was successfully solved using the dual probabilistic and particle attributes of single photons. In this study, we present a category theoretic modeling and analysis of single-photon-based decision making, including a quantitative analysis that agrees well with the experimental results. The category theoretic model unveils complex interdependencies of the entities of the subject matter in the most simplified manner, including a dynamically changing environment. In particular, the octahedral structure and the braid structure in triangulated categories provide better understandings and quantitative metrics of the underlying mechanisms for the single-photon decision maker. This study provides insight and a foundation for analyzing more complex and uncertain problems for machine learning and artificial intelligence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Information Technology & Decision Making
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.