Abstract
In this paper, we introduce a notion of categorified cyclic operad for set-based cyclic operads with symmetries. Our categorification is obtained by relaxing defining axioms of cyclic operads to isomorphisms and by formulating coherence conditions for these isomorphisms. The coherence theorem that we prove has the form “all diagrams of canonical isomorphisms commute”. Our coherence results come in two flavours, corresponding to the “entries-only” and “exchangeable-output” definitions of cyclic operads. Our proof of coherence in the entries-only style is of syntactic nature and relies on the coherence of categorified non-symmetric operads established by Dosen and Petric. We obtain the coherence in the exchangeable-output style by “lifting” the equivalence between entries-only and exchangeable-output cyclic operads, set up by the second author. Finally, we show that a generalization of the structure of profunctors of Benabou provides an example of categorified cyclic operad, and we exploit the coherence of categorified cyclic operads in proving that the Feynman category for cyclic operads, due to Kaufmann and Ward, admits an odd version.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.