Abstract
In the human neocortex, catecholaminergic connections modulate the excitatory inputs of pyramidal neurons and are involved in higher cognitive functions. Catecholaminergic fibers form a dense network in which it is difficult to distinguish whether or not target specificity exists. In order to shed some light on this issue, we set out to quantify the catecholaminergic innervation of pyramidal cells in different layers of the human temporal cortex (II, IIIa, IIIb, V and VI). For this purpose, pyramidal cells were labeled in human cortical tissue by injecting them with Lucifer Yellow, and then performed immunocytochemistry for the rate limiting catecholamine synthesizing enzyme tyrosine hydroxylase (TH) to visualize catecholaminergic fibers in the same sections. Injected cells were reconstructed in three dimensions and appositions were quantified (n = 1503) in serial confocal microscopy images of each injected cell (n = 71). We found TH-immunoreactive appositions (TH-ir) in all the pyramidal cells analyzed, in both the apical and basal dendritic regions. In general, the density of TH-ir apposition was greater in layers II, V and VI than in layers IIIa and IIIb. Furthermore, TH-ir appositions showed a regular distribution in almost all dendritic compartments of the apical and basal dendritic arbors across all layers. Hence, it appears that all pyramidal neurons in the human neocortex receive catecholaminergic afferents in a rather regular pattern, independent of the layer in which they are located. Since pyramidal cells located in different layers are involved in different intrinsic and extrinsic circuits, these results suggest that catecholaminergic afferents may modify the function of a larger variety of circuits than previously thought. Thus, this aspect of human cortical organization is likely to have important implications in cortical function.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have