Abstract

Accumulation of glycolytic metabolite methylglyoxal (MG) in diabetic kidney is thought to contribute to the pathogenesis of nephropathy, either as a direct toxin or as a precursor for advanced glycation end products (AGEs). Using (+)-catechin (CE), a novel MG trapper, we investigated whether MG trapping is sufficient to prevent the progression of diabetic nephropathy in type 2 diabetic mice. CE markedly trapped exogenous MG in a time- and dose-dependent manner and formed mono-MG-CE and di-MG-CE adducts, which were characterized by HPLC-ESI-Q-TOFMS. In vivo, CE administration for 16 wk significantly ameliorated renal dysfunction in type 2 diabetic db/db mice, partially due to MG trapping, which in turn inhibited AGEs formation and lowered proinflammatory cytokines, including tumor necrosis factor α and IL-1β. Similarly, the MG trapping and cellular signaling inhibition effects of CE were observed in human endothelium-derived cells under high glucose conditions. CE might ameliorate renal dysfunction in diabetic mice as consequences of inhibiting AGEs formation and cutting off inflammatory pathway via MG trapping. Thus, CE may be a potential natural product as an MG scavenger against diabetes-related complications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.