Abstract

π-π interactions decisively shape the supramolecular structure and functionality of π-conjugated molecular semiconductor materials. Despite the customizable molecular building blocks, predicting their supramolecular structure remains a challenge. Traditionally, force field methods have been used due to the complexity of these structures, but advances in computational power have enabled ab initio approaches such as density functional theory (DFT). DFT is particularly suitable for finding energetically favorable structures of dye aggregates, which are determined by a large number of different interactions, but a systematic aggregate search can still be very challenging due to the large number of possible geometries. In this work, we show ways to overcome this challenge. We investigate how finely translational and rotational lattices must be structured to identify all energetic minima of π-stack structures, focusing on porphyrins as a prototype challenge. Our approach involves single-point DFT calculations of systematically varied dimer geometries, identification of local energy minima, hierarchical grouping of geometrically similar structures, and optimization of the energetically favorable representatives of each geometric family. This ab initio method provides a general framework for the systematic prediction of aggregate structures and reveals geometrically diverse and energetically favorable dimers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.