Abstract
Relativistic jets can form from at least some tidal disruption events (TDEs) of (sub-)stellar objects around supermassive black holes. We detect the millimeter (MM) emission of IGR J12580+0134 --- the nearest TDE known in the galaxy NGC 4845 at the distance of only 17 Mpc, based on Planck all-sky survey data. The data show significant flux jumps after the event, followed by substantial declines, in all six high frequency Planck bands from 100 GHz to 857 GHz. We further show that the evolution of the MM flux densities are well consistent with our model prediction from an off-axis jet, as was initially suggested from radio and X-ray observations. This detection represents the second TDE with MM detections; the other is Sw J1644+57, an on-axis jetted TDE at redshift of 0.35. Using the on- and off-axis jet models developed for these two TDEs as templates, we estimate the detection potential of similar events with the Large Millimeter Telescope (LMT) and the Atacama Large Millimeter/submillimeter Array (ALMA). Assuming an exposure of one hour, we find that the LMT (ALMA) can detect jetted TDEs up to redshifts $z\sim1$ (2), for a typical disrupted star mass of $\sim1$ M$_\odot$. The detection rates of on- and off-axis TDEs can be as high as $\sim0.6$ (13) and 10 (220) per year, respectively, for the LMT (ALMA). We briefly discuss how such observations, together with follow-up radio monitoring, may lead to major advances in understanding the jetted TDEs themselves and the ambient environment of the CNM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.