Abstract

Gallium-nitride-based diode lasers were intentionally damaged using single sub-μs current pulses. This approach provoked catastrophic optical damage, a known sudden degradation mechanism, which becomes evident as surface modification at the aperture, where the 450-nm laser emission leaves the waveguide of the device. Subsequently, we analyzed the related damage pattern inside the device. Knowledge about the operating conditions, degradation time, and energy introduced into the defect allows estimates of the temperature during the process (∼ 1000°C) and defect propagation velocity (110 μm/μs). Further analysis of this data allows for conclusions regarding the mechanisms that govern defect creation at the surface and defect propagation inside the device. Moreover, we compared these findings with earlier results obtained from gallium-arsenide-based devices and find similarities in the overall scenario, while the defect initialization and defect pattern are strikingly different.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.