Abstract

The catastrophic optical damage (COD) of 450-nm emitting InGaN/GaN diode lasers is investigated with special attention to the kinetics of the process. For this purpose, the COD is triggered artificially by applying individual current pulses. This makes it possible to achieve a sub-µs time resolution for processes monitored by cameras. COD appears as a process that involves decomposition of quantum well and waveguide materials. We observe the ejection of hot material from the front facets of the laser. This can be seen in two different wavelength ranges, visible/near infrared and mid infrared. The main contributions identified are both thermal radiation and 450-nm laser light scattered by the emitted material. Defect growth during COD is energized by the optical mode. Therefore, the defect pattern resembles its shape. Ultimately, the loss of material leads to the formation of an empty channel along the laser axis. COD in GaAs and GaN-based devices follows similar general scenarios. After ignition of the process, the defect propagation during the process is fed by laser energy. We observe defect propagation velocities of up to ~30 m/s for GaAs-based devices and 110 m/s for GaN-based devices. The damage patterns of GaN and GaAs-based devices are completely different. For GaN-based devices, the front facets show holes. Behind them in the interior, we find an empty channel at the position of the optical mode surrounded by intact material. In contrast, earlier studies on GaAs-based devices that were degraded under almost identical conditions resulted in molten, phase separated and both recrystallized and amorphous materials with well-defined melting fronts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.